Numerical Approximations Using Chebyshev Polynomial Expansions

نویسندگان

  • Bogdan Mihaila
  • Ioana Mihaila
چکیده

The aim of this work is to find numerical solutions for differential equations by expanding the unknown function in terms of Chebyshev polynomials and solving a system of linear equations directly for the values of the function at the extrema (or zeros) of the Chebyshev polynomial of order N . The solutions are exact at these points, apart from round-off computer errors and the convergence of other numerical methods used in connection to solving the linear system of equations. Applications to initial-value problems in time-dependent quantum field theory, and second order boundary-value problems in fluid dynamics are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rigorous uniform approximation of D-finite functions using Chebyshev expansions

A wide range of numerical methods exists for computing polynomial approximations of solutions of ordinary differential equations based on Chebyshev series expansions or Chebyshev interpolation polynomials. We consider the application of such methods in the context of rigorous computing (where we need guarantees on the accuracy of the result), and from the complexity point of view. It is well-kn...

متن کامل

Numerical approximations using Chebyshev polynomial expansions: El-gendi’s method revisited

Abstract We present numerical solutions for differential equations by expanding the unknown function in terms of Chebyshev polynomials and solving a system of linear equations directly for the values of the function at the extrema (or zeros) of the Chebyshev polynomial of order N (El-gendi’s method). The solutions are exact at these points, apart from round-off computer errors and the convergen...

متن کامل

A Hybrid Fourier-Chebyshev Method for Partial Differential Equations

We propose a pseudospectral hybrid algorithm to approximate the solution of partial differential equations (PDEs) with non-periodic boundary conditions. Most of the approximations are computed using Fourier expansions that can be efficiently obtained by fast Fourier transforms. To avoid the Gibbs phenomenon, super-Gaussian window functions are used in physical space. Near the boundaries, we use...

متن کامل

Tau method approximation of a generalized Epstein-Hubbell elliptic-type integral

We consider the evaluation of a recent generalization of the Epstein-Hubbell elliptic-type integral using the tau method approximation with a Chebyshev polynomial basis. This also leads to an approximation of Lauricella’s hypergeometric function of three variables. Numerical results are given for polynomial approximations of degree 6.

متن کامل

Accurate solution of the Orr-Sommerfeld stability equation

The Orr-Sommerfeld equation is solved numerically using expansions in Chebyshevpolynomials and the QR matrix eigenvalue algorithm. It is shown that results of great accuracy are obtained very economically. The method is applied to the stability of plane Poiseuille flow; it is found that the critical Reynolds number is 5772.22. It is explained why expansions in Chebyshev polynomials are better s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999